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The differential equations describing the drying of a moist polydisperse prod- 
uct in a pneumatic drier are presented. A method for solving them numerically 
is described. 

In [I] we described a mathematical model of the process of drying of a monodisperse prod- 
uct in a pneumatic tube drier, which adequately describes the sctual drying process. This 
paper extends those investigations to describe the drying of a polydisperse product. 

Unlike the model of the drying of a monodisperse product, in the model proposed here the 
kinetic equations of the heat and mass transfer and the equation of motion of the particles 
of the dried material are formulated for each fraction separately, and the balance equations 
for the moisture and heat are written for the whole mass of the dried material. 

In this paper we consider the drying of a moist polydisperse product in a pneumatic gas 
drier. The well-known fractional composition of the dried material is assumed. The drying 
process is stationary. In any transverse cross section normal to the motion of the mixture 
of material and drying gas, all the parameters of the process are constant (the one-dimen- 
sional model). The temperature and moisture content over the cross section of the dried par- 
ticles of material are constant. The diffusion and heat transfer in the flow along the mo- 
tion of the mixture of gas and material is negligibly small compared with the amount of heat 
and mass of material transferred by the flow of mixture. The pressure drop is constant over 
the whole length of the apparatus. 

Hence, we will consider the one'dimensional problem in the direction of the axis coin- 
ciding with the direction of motion of the mixture of material and drying gas. The heat and 
mass transfer obeys the Fourier--Fick laws. 

At a distance x from the entrance to the tube drier we distinguish an element of volume 
of height dx and base of unit area. A change in the amount of moisture in the material of 
the i-th fraction in this volume d[GM~(~i)/(l -- W(~i))]W(di) occursdue to evaporation of 
moisture from the material in the drying gas F(VM(~i))B(W(~i))[P(T(~i)) -- p]dx. Consequently, 
the equation of mass transfer between the i-th fraction of the material and the drying gas 
can be written in the form 

d [ G,,~(6,) W(6~)] q-f(v~i(6,))~(W(6~))[P(T(6i) )-p]-O. (1) 
dx 1 -- W (6~) 

In the volume dx of the drying gas considered an amount of heat F(VM(~i))~(Vg ] VM(~i) , 
~)(0 -- T(~i))dx is given to the material of the i-th fraction. Part of this heat xs used to 
change the heat content of the material d[GM~(~i)/(l -- W(6i))]CM(W(~i))T(~i) and part is used 
to evaporate the moisture (from the material into the gas) F(VM(~i))~(W(~i))[P(T(~i)) -- p]. 
r(T(~i))dx. The equation of heat transfer between the drying gas and the dried material of 
the i-th fraction takes the form 

d [ G~o(8~) C,~(W(6~))T(8~)] +F(v~,(6~)){a(T(8,)--O)+~[P(T(6i))--p]r(T(8i))J=O. (2) 
d x  1 - -  W (63 

Here  and e v e r y w h e r e  h e n c e f o r t h  t he  a rguments  i n  t h e  f u n c t i o n s  ~ and B a r e  o m i t t e d  f o r  s im-  
p l i c i t y .  

In deriving the equation of motion of the particles of material of the i-th fraction we 
must take the variability of its mass into account. The derivation is similar to the 
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derivation of the equation of motion of a particle in [I]. The equation has the following 
form: 

v~f (6~) dvM (6i) I ~ (Vg -- v M (6i)) = 0. (3) 
dx § g- m (60 

N 

E W(6i) of moisture with material An amount Ggd of moisture with drying gas and 1--W(6i) 
i=I 

passes through each cross section of the tube drier. An amount Ggd b + [GM/(I -- Wb)]W b of 
moisture with gas and material enters the drier. We obtain the following moisture-balance 
equation: 

N 

Ogd@ E Gum(6i) IV(6,) =Ogdbq- G-------~----M IVb. (4) 
i=, I -- W (60 I -- Wb 

The subscript b denotes that the quantity concerned relates to the beginning of the tube drier. 

An amount of heat GgCg(db)0 b with gas and [GM/(I --Wb)]CM(Wb)T b of heat with material 

arrives in the drier. Part of this heat emerges from the tube drier with material and gas 
N N 

E[ GMm(6i)/(I -- W(6i))]CM(W(6i))T(6 i) + GgCg(d)0, and part Z Gg(d -- db)r(T(di)) is used to 
i=I 

i=I 
evaporate moisture from the material in the gas. Taking the loss of heat through the walls 
Ql into account, we obtain the following heat-balance equation: 

N 

agCg (d) 0 + %-~ a~,~o(6,) 
l - -  W (6i) 

In this equation 

N 

+ E Gg(d - -  db) r (T 
i=l 

C,, (V/(80) T(6~) + 

G M 
(6t)) + Q[ = GgCg(db) 0b@ 1 -- Wb C .  (W b) Tb . 

x 

qz =-~K [O(~)--T, ld~. 
0 

(5) 

We will formulate the mathematical problem of describing the drying process in the 
pneumatic drier as follows: we wish to determine the values of W(~i) , T(~i) , VM(~i), 8 and 
d which satisfy Eqs. (])-(5) (along the length of the apparatus and at the exit from it), 
if we know the initial conditions of the process 

W (80 [~=o = Wb, T(60l~=o = Tb, 
(6) 

v~, (ai) ix=0 = VM, b' d lx=0 = d b '  0 Ix=0 = 8b. 

The f u n c t i o n  P ( T ( ~ i ) )  i n  (1) and (2) i s  found from t a b l e s  or a n a l y t i c a l l y .  

The surface of the material of the i-th fraction F(VM(~i)) in unit volume of the mixture, 
which occurs in Eqs. (I) and (2), is expressed as follows in terms of the average dimensions 
of the i-th fraction of material ~i and the velocity VM(~i): 

6 G.~ (60 
~ .  (8 , ) )=  6-7 " ~mV.  (~,) ' 

while the numerical value of the aerodynamic resistance force of the medium @(Vg --v}~(~i)) 
is given by [2] 

~ pg(O, d)(vg-- v M (6i)) 2. 

We s u b s t i t u t e  t he se  q u a n t i t i e s  i n t o  Eqs. ( 1 ) - (5 )  and m u l t i p l y  the  f i r s t  t h r e e  e q u a t i o n s  by 
~i" Assuming t h a t  t he  mass of a p a r t i c l e  of  m a t e r i a l  of  the  i - t h  f r a c t i o n  m(~ i )  = ( ~ / 6 ) p  M 
(W(~i)) , we obtain a system in which the multiplier for the derivative is 6 i. Since, for 
finely dispersed products (precisely those which are being dried in the pneumatic driers) 
the value of 6i is much less than the value of all the remaining parameters of the system, 
Eqs. (I)-(5) belong to the class of system of equations with a small parameter in the dhriva- 
tives [3]. A characteristic feature of such systems is the presence in the neighborhood of 
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the point x = 0 of a region whose dimensions are of the order of 6 i (0 ~ x ~ O(@i)); in this 
region the solution of the system (here W(Si) , T(~i), VM(@i)) changes considerably. This 
region is called the boundary layer, for which each fraction of material has its own value. 
The integration step in the region of the boundary x = 0 (the origin of the apparatus) should 
be considerably less than the thickness of the boundary layer [4]. Hence, when choosing the 
constant step over the whole integration region this fact leads to a considerable increase 
in the amount of calculation required for small values of the parameters for the derivatives 
(in this case ~i)" It is better to use an integration step which varies along the length of 
the tube drier, and which depends on the behavior of the solution of the initial problem. 
In the region of the boundary it should be much less than ~i, while outside the boundary 
layer the step can be chosen to be constant, not exceeding a certain value Ho. 

By replacing the derivatives by constant ratios we can reduce Eqs. (I)-(5) to a system 
of nonlinear algebraic equations. In particular, instead of (1) we will consider the equa- 
tion 

1 [ W:+i(8i) Wj(6r ] 6 ~J -- [P(Tj(6i))--pJ:O. (7) 
AS ! -- Wj+~ (6i) 1 EW-~[(63] + 6i %~,,,i (63 

Here hj = xj+1 -- xj and the subscript j or j + ] denotes that the value of the corresponding 
function is taken at the point xj or xj+1. 

Knowing the values of all the functions at the point xj, from (7) for i = ] (i is the 
number of the fraction) we find Wj+l(Si); from the remaining two finite-differenee equations 
(not given here) we find T~+I(6~) and vM ~+1(@x). Changing the value of i from 1 to N we 
find the values of the moisture content~'Jthe temperature, and the velocity of the material 
for all the fractions (for all @i). Then, from (4) we find the moisture content of the gas 
d at the point xj+1(dj+~), and from (5) we find 8j+~. 

By choosing hj+~ and repeating this process we find W(6i), T(Si), VM(~i), d and 8 at 
the point xj+u etc. 

Thus we find the distribution of all the parameters of the drying process along the 
length of the tube drier. Hence we find not only the values of the moisture content, the 
temperature, and the velocity of the material of all the fractions, but also their "averaged" 
values. For example, the mean temperature of the material at the point xj is determined as 
follows. We find the total amount of heat Q which passes with the material of all the frac- 
tions through the cross section xj 

N 

Q : 2 G~t~ (6i) C~ (Wj (8i)) T~ (Si)- 
i = l  

On the  o t h e r  hand, Q = GMCM(Wj,av)Tj,av , whence 

TL av -- Q 
G~C~ (W 4 a0 

The average  mo i s tu r e  c o n t e n t  of  the  m a t e r i a l  Wj,av r e q u i r e d  to de te rmine  T j , av  can be found 
from the equation 

N 

Wj, a v  : i = l  
GM 

To s tudy  the  q u a l i t a t i v e  behav io r  of the paramete rs  of the  d ry ing  process  of a p o l y d i s -  
perse product we carried out a series of computer calculations. As an example we will pre- 
sent the calculation of the drying of sodium fluosilicate having six fractions, with an aver- 
age diameter of the fractions of 1.25, 0.9, 0.8, 0.7], 0.63, and 0.5 mm and a percentage con- 
tent of dry material of each of these fractions of 2.44, 5.8, I].2, 20.1, 24.5, and 35.96% 
respectively. Figure ; shows the average moisture content of the material (curve ]) and the 
moisture content of four fractions along the length of the tube drier. It can be seen that 
particles of the material having maximum dimensions (curve 2) are practically not dried, 
while particles of material with minimum dimensions (5) are completely dried inside the 
apparatus. Curves 3 and 4 show the changes in the moisture content of the material of inter- 
mediate fractions (0.8 mm and 0.63 mm) along the length of the tube. Figure 2 shows the de- 
pendence of the velocity of the drying gas (curve l), the average velocity of the materials 
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Fig. I. Fig. 2. 
Fig. I. Dependence of the moisture content of the mate- 
rial of different fractions on the length of the tube 
drier: I) Wav, 2) W(0.8), 3) W(1.25), 4) W(0.63), 5) 
w(0.5). 

Fig. 2. Profiles of the velocity of the gas and material 
of different fractions: I) Vg, 2) VM,av, 3) VM(0.5), 4) 
VM(l.25). 

t 

0 Xo 0 x 

Fig. 3 Fig. 4 

Fig. 3. Graphs of the temperature of the gas and material 
of different fractions: i) 0; 2) Tav; 3) T (0.5); 4) T (1.25). 

Fig. 4. Dependence of the moisture content of the material 
on the length of the apparatus for different models of the 
drying process: 1,3,4) the polydisperse model (Way , W (3.4), 

W (1.7); 2) the monodisperse model. 

(2), the velocity of the maximum fraction of material (4) and the velocity of the minimum 
fraction of the material (3) and the length of the apparatus. The change in the temperature 
of the drying gas (I) and the temperature of the material of the different fractions along 
the length of the tube are shown in Pig. 3. Curve 2 describes the change in the average 
temperature of the material, while curves 3 and 4 describe the change in the temperature of 
its minimum and maximum fractions. The variation in the form of the curves 2 and 3 after 
the point x = xo is due to the fact that the material of the minimum fraction gives, in the 
part of the tube from 0 to x = xo, all of its moisture to the drying gas and begins to heat 
up. As a result the average temperatureof the material increases. 

To check the model (I)-(6) we carried out computer calculations of the drying of Moscow 
coal [5]. The results obtained are shown in Table I. We can conclude from a comparison of 
the experimental data and the data obtained from the model that the model which has been con- 
structed of the drying of a polydisperse product satisfactorily describes the actual drying 
process occurring in the pneumatic drier. 

Numerical calculations of the drying process enable us to conclude that the polydisperse 
model of drying more accurately describes the actual process than the monodisperse model with 
an equivalent particle diameter, determined by some averaging method. 
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TABLE i. Comparison of the Experimental and Theore- 
tical Data on the Drying of Moscow Coal (at the exit 
of the drying tube) 

i Expt. m. %, 7, oc o, ~ 

No. Expt. Fheor} Expt. Theory Expt. Theory 

1 27,9 28,2 69,7 76,8 230 260,9 
2 26,8 27,5 67,4 62,3 224 239,2 
3 23,4 22,4 68,6 79,4 238 250 
4 �9 27,2 28,5 68,8 76,4 204 240 
5 23,4 22,0t 69,9 73,3 163 149,7 

For a more accurate answer to the question of when it is best to use the polydisperse 
model and when one can use the simpler monodisperse model we carried out a series of computer 
calculations. It was found that if the diameters of the particles of the dried material 
differ considerably, there are considerable differences in the results obtained using the 

�9 monodisperse and polydisperse models. We calculated a model problem of the drying of sodium 
fluosilicate having two fractions (3.4 rmn and 1.7 mm) with the same content by weight of ma- 
terial of each of them. Figure 4 shows the results obtained by calculation for the moisture 
content of the material using the polydisperse model (curve |) and the monodisperse model 
(curve 2) (the equivalent diameter was found by a linear and volume-surface method of aver- 
aging [2]; the latter is more accurate for calculations of the drying process). Curves 3 
and 4 show the change in the moisture content of the first and second fractions of the mate- 
rial along the length of the drying tube. For this example the final moisture contents of 
the product calculated using the polydisperse and monodisperse models were 4.2% and 1.2% for 
an initial moisture content of 20%. 

If the differential curve of the distribution of the mass of the moist product has an 
excess>-2, and a variationS30% (i.e., this curve has a pronounced maximum and then drops 
sharply) we can use an equivalent particle diameter and carry out the calculations using the 
monodisperse model. In this case the main mass of the particles has a single size. 

In conclusion it should be noted that for a number of fractions of the material equal to 
I, this model changes into the model of the drying of a monodisperse product []]. 

Hence, it is desirable to use the polydisperse model of drying when the diameters of the 
particles of the material differ considerably, while the content by weight of these fractions 
is appreciable. In addition, it is necessary to use this model when investigating the drying 
of products for which it is necessary to know the change in the parameters of the material 
(the moisture content and the temperature) along the length of the drier for all the frac- 
tions. In particular, by studying the drying process of labile materials one can estimate 
the fraction of the material decomposed during the drying, by knowing the temperature of the 
material of all the fractions. The polydisperse model must also be used to calculate the 
drying of products which deteriorate in quality by giving off water of crystallization. The 
fraction of this "poor" product can be estimated only using the polydisperse model. 

NOTATION 

GM, Gg, weight flow rates of the absolutely dry material and the drying gas through a 
unit cross section of the tube in unit time; W(6i) , d, moisture contents of the material of 
the i-th fraction and the gas; T(di) , e, temperatures of the material of the different frac- 
tions and the gas; m(~i), relative content (in percentage by weight) of the material of the 
different fractions; ~, 6, heat and mass transfer coefficients; P(T), equilibrium vapor pres- 
sure of water at the temperature T; p, partial pressure of the water vapor in the gas; CM(W) , 
Cg(d), heat capacities of the material for a moisture content W and of the gas for a moisture 
content d; r(T), specific heat of vaporization at the temperature T; g, acceleration due to 
gravity; VM(~i) , Vg, linear velocities of the material and the gas; A, S, length of the 
perimeter and the area of cross section of the tube drier; K, heat transfer coefficient from 
the drying gas through the walls of the tube to the surrounding medium with temperature Ts; 
Pdm' PM (W)' pg(8, d), densities of the dry material, the material with a moisture content W, 
and the drying gas at a temperature O and a moisture content d, respectively; and ~, the 
drag coefficient of a particle. 
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MATHE~IATICAL MODELING OF HEAT AND MASS TRANSFER IN A MELT 

DURING INTERACTION WITH JETS OF A CHEMICALLY ACTIVE GAS 

V. T. Rezniehenko and V. P. Koval' UDC 536.24:51 

The temperature and concentration distributions of reacting components of a melt 
moving in an axisymmetric bath are obtained during interaction with jets of a 
gas injected on its surface. 

The velocity distribution of a melt in an axisymmetric bath is found in [l] for the 
delivery of a gas jet to the free surface. It is possible to solve the problem of heat and 
mass transfer in a melt reacting with a gas jet for a known velocity field in order to obtain 
data on the characteristics of the process and on the efficiency of the reactor (oxygen con- 
verter , pyrolysis apparatus, etc.). 

The physical model of jet interaction with a melt is represented in Fig. I. There is a 
surface L on the lune on which the gas jet reacts with the melt. The heat being liberated 
is expended in heating and evaporating its components. Because of the formation of a high- 
temperature zone, the interface is heated to a temperature exceeding the temperature of the 
melt. The heated layer of the melt together with the oxides are transferred from the lune 
over the volume of the bath. As soon as the necessary thermodynamic state is achieved, reac- 
tions between the oxides and the melt components take place, including the appearance of 
gaseous interaction products. Therefore, the dimensions of the reaction surface, its temper- 
ature, and the concentration of the chemically active reaction products in combination with 
the hydrodynamic circumstances predetermine the rate of the processes in the bath. 

In constructing the mathematical model, we assume that the purging mode does not change, 
and the motion is self-similar, i.e., with a turbulent analog for the Reynolds number not 
less than the limit value for the reactor [I]. Such an assumption permits considering the 
steady-state velocity field in the bath. The component concentrations in the melt and its 
temperature because of the chemical reactions are time dependent, hence the heat and mass 
transfer process is a nonstationary process. 

The equation for the change in component concentration in a melt must be solved in con- 
junction with the energy equation governing the temperature change. These equations are 
written thus in the presence of chemical reactions [2]: 

dm,~ = DrV2mn + Arnn; 
dT 

P dTdh =LrV, T+Drdiv(Ehnpgradmn)~ . + h h .  

The c h a n g e  i n  c o n c e n t r a t i o n  o f  t h e  n - t h  componen t  b e c a u s e  o f  c h e m i c a l  r e a c t i o n s  i s  t a k e n  i n t o  
a c c o u n t  by  Am n w h i l e  hh i s  t h e  q u a n t i t y  o f  h e a t  b e i n g  l i b e r a t e d  o r  a b s o r b e d  p e r  u n i t  t i m e .  
An a s s u m p t i o n  a b o u t  t h e  c o n s t a n c y  o f  t h e  t u r b u l e n t  a n a l o g s  o f  t h e  c o e f f i c i e n t s  o f  d i f f u s i . o n  
and h e a t  c o n d u c t i o n  o v e r  t h e  vo lume  o f  t h e  p a t h  i s  i n t r o d u c e d  f o r  t h e  c o n d i t i o n s  o f  d e v e l o p e d  
t u r b u l e n t  m o t i o n ,  which  p e r m i t t e d  i t  t o  be  e x t r a c t e d  o u t s i d e  t h e  d i f f e r e n t i a t i o n  symbo l .  Fo r  
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